Space-time geostatistical data

o Observations taken over space and over time

o Z(s,t): indexed by space, s, and time, t
@ Space can be values at sampled points (geostatistical) or polygons
@ Focus on geostatistical /time data

o Z(s, t) exists for all locations and all times
o or all areas and all times

@ Many ideas can be used with (or extended to) areal data
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Formats / types of space-time data

@ 4 possible types of data
o time-wide:
o rows are spatial locations (points or polygons)
o columns are times
o Best for data that is spatially rich, time poor, e.g. satellite
@ space-wide:
e rows are times
o columns are spatial locations (points or polygons)
o Best for data that is temporally rich, space poor, e.g. sensors at fixed
locations

@ long format: gathering columns into rows
o One row for each location and time
@ trajectories:

o location of something being tracked over time
o specialized methods
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Space time packages in R

@ The major packages for space time data are:
@ spacetime:

o extends sp structures to the first 3 formats
o uses xts and zoo packages for the time information
o provides lots of analyses - used for most of the analyses here

@ adehabitat:

o for trajectories

o ade4 and adehabitat are companion packages.

o Both are major packages that implement the French school of
population and community data analysis
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Overview of space-time analyses
o Key points:

o Data often collected without a specific scientific question in mind
o Many different methods / approaches
o Almost all are more complicated than purely spatial methods
o What question do you want to answer?
@ Some possible questions / goals:
o Describe spatial pattern for obs. taken at same time
o Describe temporal pattern for obs. taken at same location
o Does the spatial pattern change over time?
or does the temporal pattern change over space?
o Predict / map values in (space, time)
o Fit a dynamic model to (space, time) data
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Simple space-time analyses

@ Describe spatial pattern for obs. taken at same time
o Divide the data by times (or time bins)
o Describe spatial pattern at each time
o Can plot spatial data at each time

@ Describe temporal pattern for obs. taken at same location
o Divide data by individual locations
o Apply time-series methods to each location
o Can overlay multiple time series on one plot
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does “same pattern” mean?

@ Same pattern in values: focus on Z(s).

@ Same spatial structure: focus on patchiness and variability
o look at semivariograms

o First implies second, second doesn't imply first

o Example: How accurate is a forecast of snow amount?

o Does the forecast have the same pattern as reality?
o Predict snow amount at a location well
o Predict there will be a patch of heavy snow somewhere in central I1A
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Less simple space time analyses

@ Summarize temporal pattern by one or a few numbers

o Then look at spatial variation in those summaries

o often called Empirical Orthogonal Functions

o statisticians call this Principle Components Analysis (PCA)
o Extend geostatistical analyses to space-time (3D)

e convert time to space

o Or, assume time and space independent

@ Model how process evolves over time
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Empirical Orthogonal Functions

@ Summarize pattern by reducing dimensionality
o Describes temporal pattern in values (Z(s)) over space
o Example:
o Data: 3 var. measured on 20 samples / 3 times at 20 locations

Z value
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Empirical Orthogonal Functions

@ The three variables are correlated
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Empirical Orthogonal Functions

@ Correspond to temporal patterns at each location
o Some are high/low/high; some are low/high/low; some are flat

Z value
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Empirical Orthogonal Functions

@ One variable will summarize much of the info in 3 variables

value of X

Location 1
Location 2
Location 3
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Axis 1 score
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Empirical Orthogonal Functions

@ How that axis 1 score is computed:

o Have Zj: value of the j'th variable for obs. i
o Center each observation by that variable's mean

13/

Z;=2;-7;

o Z; has mean 0 for each variable j
o compute a weighted average of the Z"'s for each observation

Si=omZj +aZjh+ a3l

o For each variable, the S; have mean 0

o For these data, a; = 0.903, ap, = —0.965, a3 = 1.361.
@ How are the o; values determined?

e Simpler example: 2 variables, both centered to mean 0

o Want to summarize both variables by one new score

o Define a line, project each point onto that line
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Empirical orthogonal functions

@ Some lines not so good: little spread in the projected points

@ Some lines very good: lots of spread in the projected points
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Empirical Orthogonal Functions

o EOF/Principal Component Analysis find a's that maximize spread of
the projected scores
@ An eigenvector / eigenvalue problem (details on request)
@ Continue beyond one axis.
o consider all 2nd axes that are L to axis 1
o find the one with maximum Variance of projected scores
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User's guide to EOF / PCA

@ Axes are orthogonal, so axis 1 scores are not correlated with axis 2, or
axis 3, ...
o Could be good or not-so-good
o Good: axis scores represent independent pieces of information
o Not-so-good: physical things are probably not orthogonal, so may be
hard to relate EOF axes to physical things
@ Can decompose total variability into contributions from each axis
o Total variability = Var (variable 1) 4+ Var (variable 2) + - - -
o Eigenvalue for each axis is the Variance of scores on that axis
e Sum of eigenvalues = Total variability
o Contribution of each axis usually expressed as percentage
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User's guide to EOF / PCA

@ What is the temporal pattern represented by an EOF?
o plot scores on an axis vs time

@ How strongly is a temporal pattern expressed at each location?
o Display as map of the «'s for each location.
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Empirical Orthogonal Functions

o Example: 3 time, 20 locations data set
o Variances of each variable: 0.960, 1.304, 2.102.
o Total variability = sum of variances = 4.367
o Variance of scores on each axis: 3.598, 0.592, 0.176 (sum: 4.367)
e % variance: 82.4, 13.6, 4.0
o First axis summarizes most of the temporal pattern.

test.eof1d$PCL

Jan2014 May2014 Sep2014 Jan2015 May2015
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Empirical Orthogonal Functions

e Two views of PCA / EOF

o decomposing variation: EOF 1 represents 82.4% of the variation
o reduced rank approximation to a matrix
o Reduced rank approximations
o Calculate two vectors: one for locations, L, one for times, T
o Already have locations: EOF scores for axis 1
o based on that can calculate vector for times
o intuitively “how strong” is the spatial pattern that time
o Can approximate matrix A by L x T, actually A; = L; T;
o Approximates matrix with 60 values by 20 + 3
o Can improve approximation by adding 2nd axis:
A=1OTD L 1T
o Known as Singular Value Decomposition
o Very closely related to the Eigen Decomposition used in PCA
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Empirical Orthogonal Functions

o Have presented simplest (classic) form of EOF's
o Statistical view: PCA on covariance matrix

o PCA on covariance or PCA on correlation matrix?

o Total variability can be driven by one (or a very few) variables with

large variance

o Eg. Var X1 = 100, Var X2 = 2, Var X3 = 2, Var X4 =2

e “most important” axis will be X1 because it has a large variance
e EOF/PCA analysis of covariance matrix only makes sense when each

variable has same units

o Statistical PCA more frequently done on correlation matrix

e covariance matrix: center each variable

o correlation matrix: center and standardize each variable (so each Z*
has sd = Var =1
An axis then represents a bundle of correlated variables, i.e., variables
that change together (4 or -1)
axes get large eigenvalues by representing many variables that change
together.
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EOF extensions: rotated axes

@ rotate axes to make them “more physically relevant”

@ choice of rotation still determined by data, not outside knowledge
@ Many algorithms, each chooses rotation differently

o Orthogonal rotations: axes still orthogonal

o Most common is varimax algorithm: make a's close to 0 or £+ 1

e so axes tend to either ignore a variable or include it completely

e Oblique rotations: allow axes to be non-orthogonal

o Much more difficult to define criteria for “good” set of axes

o Statistics: known as factor analysis
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EOF extensions: Extended EOF

Analysis based on covariance between two locations
treats each time as an independent observation
What if times are not independent?

Extended EOF: incorporate temporal correlation

See references for additional information
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PM10 in Germ

e sd's for each EOF are: 23.3, 12.7, 8.7, 7.7, 6.2, 5.6, 3.2, 2.8, and 1.9

o First EOF accounts for 58.3% = 23.3%2/(23.3% +12.72--- 4+ 1.9%) of
total variability
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PM10 in Germ
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Space-time data

o What about pattern as strength/scale of heterogeneity?

e Semivariogram for spatial pattern
e autocorrelation function for temporal pattern

@ autocorrelation function is Cor Y;, Y:is for different &

@ § is the time lag (equivalent to distance in space)

o How strongly correlated are obs. one time apart (6 = 1)?
o How quickly does correlation die out with time lag?

o Can describe autocorrelation / autocovariance as semivariance in time
Yeime(6) = E [2(s,£) = Z(s.t + 8))° = 0*(1 ~ p(9))

o under assumption of 2nd order stationarity
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Space-time data

@ Lots of things you could do

@ My approach is choose methods that answer your questions
@ Is the spatial pattern similar at each time?
o Estimate and fit variograms for each time
o How similar are they?
o Could construct an approximate test based on weighted SS from fits
@ Predict over space at each time separately.
o Could divide data by time, estimate time-specific variogram
o Nothing new, but ignores any temporal dependence
o If believe similar spatial patterns each time:
o Better estimate of variogram by combining information across times:
o all times have same variogram: compute average of time-specific vg's
o variogram changes smoothly, v similar to v;_1

e (h) = Me(h) + (1 = A% (h)

o Combine spatial and temporal dependence: space-time kriging
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PM 10 in Germany

gamma
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log PM 10 in Germany
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Space-time krigin

o Consider data as one long vector for all locations and times
o If fit a single spatial variogram, you pool information from all times.
o If fit a single temporal variogram, you pool information from all

locations.

But want a variogram for space and time simultaneously

Once you have variograms: predicting is easy.

Use the big VC matrix to krige.

Two relatively simple models for the space-time variogram

o Metric ST model
o Separable ST model
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log PM 10 in Germ

time lag (days)

Spring 2018

gamma

T T T T T
50 100 150 200 250 300
distance (km)

Philip M. Dix tate Univ.) S a Spring 2018 34/48

Space-time krigin

@ Define time as a third coordinate

@ Define an anisotropy coefficient , 6, (geometric anisotropy ideas) to
relate one unit of time to equivalent distance

hij = /(51 = 52 + 6(t; — ;)2

o Fit one joint variogram
@ No issues with nugget or sill

o nugget is y(h) for h close to 0 (similar time, similar location)
o sill is y(h) for large separation in time, or distant locations, or both

Philip M. Dixon (lo tate Univ.) S ta Analysis - Part 7 Spring 2018 35 /48

log PM 10 in Germ

50 100 150 200 250 300
P T

sample metric

07
8 06
05
6
2
) 0.4
=3
=
S
@ 03
£
0.2
2
0.1
o 0.0

50 100 150 200 250 300
distance (km)

Philip M v 2 7 Spring 2018



log PM 10 in Germany
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Space-time data: Separable model

@ Write space-time covariance as a product of a spatial covariance
function and a temporal covariance function

Cov Z(S,‘7 t,‘), Z(Sj7 tj) = U'ZCOI’SP;,CE(S,'7 Sj) X Cortime(t;, tj)

o Single sill

e Sometimes sum used instead of product
@ Commonly used because it's simple

o Simplifies a lot of matrix computations

o Dominant model, especially prior to 2000
@ But it's probably too simple to be realistic

o Assumes no space-time interaction

Spring 2018
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log PM 10 in Germany
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log PM 10 in Germany
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Choosing a model

@ Could view as a model selection problem
o Like choosing a spatial variogram model
@ Principles are simple:

Spring 2018

o Use model selection criteria for all (s,y): InL, AIC, wt SSE

o Or “what looks like a good fit"
o No easy software implementation

o My suggestion:

41

o Kriging works best when have a good model for short distance/time lag
o So which model does the best job fitting empirical time-specific

variograms for short distances?
o To me: the Separable model (see next slide)
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log PM 10 in Germany: metric model
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log PM 10 in Germany: separable model
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Hierarchical modeling

@ Kriging is a “dumb” predictor
o Only uses observed values and their patterns

@ Space-time data often arise because of ecological /environmental
processes

o “blob” of pollutant gets carried downstream or downwind

e invasive species has dispersal and population dynamics

o Use knowledge of the process(es) to predict Z(s, t) given information
about dynamics and Z(s,t — 1)

@ Hierarchical models provide a way to think about modeling such data
@ Two separate levels in a hierarchical model

@ Process model:

o dynamical model describing how the system works
o probably includes variables not directly measured

@ Observation model:
o how what you observe relates to the quantities in the process model
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o Classic example:
o predicting location of a deep-space satellite
o Process model has 9 state variables:
(X.Y,Z) position, (X,Y,Z) velocity, (X,Y,Z) acceleration
o Observation model has intermittent fixes on position (X,Y,Z)
o Data measured with error
o Use data to estimate parameters in process and observation models

@ Use model to predict position each day

) Philip M. Dixe (lowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 4

Hierarchical models

@ When all random distributions are normal, estimate parameters by
maximum likelihood

@ Procedure to predict state variables known as the Kalman filter

@ More generally, likelihood has integrals that can not be analytically
solved

@ Bayesian inference
@ Adds third level to model: specification of prior distributions
@ Spatial application:

e Environmental contaminant data with < detection limit observations
o Process model: Z(s) follows a spatial correlation model
o Observational model:

data are Z(s) when above detection limit and “< dI" when not

@ Details very problem-specific
o If you're interested in more:
o Stat 534: Ecological statistics, ends with section on hierarchical
modeling for ecological data
o Stat 574: Bayesian statistics (previously Stat 444)
o Banerjee, Carlin and Gelfand or Wikle and Cressie books
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