
Space-time geostatistical data

Observations taken over space and over time

Z (s, t): indexed by space, s, and time, t

Space can be values at sampled points (geostatistical) or polygons

Focus on geostatistical/time data

Z (s, t) exists for all locations and all times
or all areas and all times

Many ideas can be used with (or extended to) areal data
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Formats / types of space-time data

4 possible types of data

time-wide:

rows are spatial locations (points or polygons)
columns are times
Best for data that is spatially rich, time poor, e.g. satellite

space-wide:

rows are times
columns are spatial locations (points or polygons)
Best for data that is temporally rich, space poor, e.g. sensors at fixed
locations

long format: gathering columns into rows

One row for each location and time

trajectories:

location of something being tracked over time
specialized methods
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Space time packages in R

The major packages for space time data are:

spacetime:

extends sp structures to the first 3 formats
uses xts and zoo packages for the time information
provides lots of analyses - used for most of the analyses here

adehabitat:

for trajectories
ade4 and adehabitat are companion packages.
Both are major packages that implement the French school of
population and community data analysis
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Overview of space-time analyses

Key points:

Data often collected without a specific scientific question in mind
Many different methods / approaches
Almost all are more complicated than purely spatial methods
What question do you want to answer?

Some possible questions / goals:

Describe spatial pattern for obs. taken at same time
Describe temporal pattern for obs. taken at same location
Does the spatial pattern change over time?
or does the temporal pattern change over space?
Predict / map values in (space, time)
Fit a dynamic model to (space, time) data
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Simple space-time analyses

Describe spatial pattern for obs. taken at same time

Divide the data by times (or time bins)
Describe spatial pattern at each time
Can plot spatial data at each time

Describe temporal pattern for obs. taken at same location

Divide data by individual locations
Apply time-series methods to each location
Can overlay multiple time series on one plot
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Germany PM10 in space
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PM10 in time
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What does “same pattern” mean?

Same pattern in values: focus on Z(s).

Same spatial structure: focus on patchiness and variability

look at semivariograms

First implies second, second doesn’t imply first

Example: How accurate is a forecast of snow amount?

Does the forecast have the same pattern as reality?
Predict snow amount at a location well
Predict there will be a patch of heavy snow somewhere in central IA
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Less simple space time analyses

Summarize temporal pattern by one or a few numbers

Then look at spatial variation in those summaries
often called Empirical Orthogonal Functions
statisticians call this Principle Components Analysis (PCA)

Extend geostatistical analyses to space-time (3D)

convert time to space
Or, assume time and space independent

Model how process evolves over time
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Empirical Orthogonal Functions

Summarize pattern by reducing dimensionality
Describes temporal pattern in values (Z(s)) over space
Example:

Data: 3 var. measured on 20 samples / 3 times at 20 locations
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Empirical Orthogonal Functions

The three variables are correlated

Location 1
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Empirical Orthogonal Functions

Correspond to temporal patterns at each location
Some are high/low/high; some are low/high/low; some are flat
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Empirical Orthogonal Functions

One variable will summarize much of the info in 3 variables
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Empirical Orthogonal Functions

How that axis 1 score is computed:

Have Zij : value of the j ’th variable for obs. i
Center each observation by that variable’s mean

Z∗
ij = Zij − Z j

Z∗
ij has mean 0 for each variable j

compute a weighted average of the Z∗
j ’s for each observation

Si = α1Z
∗
i1 + α2Z

∗
i2 + α3Z

∗
i3

For each variable, the Si have mean 0
For these data, α1 = 0.903, α2 = −0.965, α3 = 1.361.

How are the αj values determined?

Simpler example: 2 variables, both centered to mean 0
Want to summarize both variables by one new score
Define a line, project each point onto that line
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Empirical orthogonal functions

Some lines not so good: little spread in the projected points

Some lines very good: lots of spread in the projected points
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Empirical Orthogonal Functions

EOF/Principal Component Analysis find α’s that maximize spread of
the projected scores
An eigenvector / eigenvalue problem (details on request)
Continue beyond one axis.

consider all 2nd axes that are ⊥ to axis 1
find the one with maximum Variance of projected scores

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Axis 1 score

A
xi

s 
2

 s
co

re

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 16 / 48



User’s guide to EOF / PCA

Axes are orthogonal, so axis 1 scores are not correlated with axis 2, or
axis 3, ...

Could be good or not-so-good
Good: axis scores represent independent pieces of information
Not-so-good: physical things are probably not orthogonal, so may be
hard to relate EOF axes to physical things

Can decompose total variability into contributions from each axis

Total variability = Var (variable 1) + Var (variable 2) + · · ·
Eigenvalue for each axis is the Variance of scores on that axis
Sum of eigenvalues = Total variability
Contribution of each axis usually expressed as percentage

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 17 / 48

User’s guide to EOF / PCA

What is the temporal pattern represented by an EOF?

plot scores on an axis vs time

How strongly is a temporal pattern expressed at each location?

Display as map of the α’s for each location.
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Empirical Orthogonal Functions

Example: 3 time, 20 locations data set
Variances of each variable: 0.960, 1.304, 2.102.
Total variability = sum of variances = 4.367
Variance of scores on each axis: 3.598, 0.592, 0.176 (sum: 4.367)
% variance: 82.4, 13.6, 4.0

First axis summarizes most of the temporal pattern.
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Empirical Orthogonal Functions

Two views of PCA / EOF

decomposing variation: EOF 1 represents 82.4% of the variation
reduced rank approximation to a matrix

Reduced rank approximations

Calculate two vectors: one for locations, L, one for times, T
Already have locations: EOF scores for axis 1

based on that can calculate vector for times
intuitively “how strong” is the spatial pattern that time

Can approximate matrix A by L× T , actually Aij = LiTj

Approximates matrix with 60 values by 20 + 3
Can improve approximation by adding 2nd axis:
A = L(1)T (1) + L(2)T (2)

Known as Singular Value Decomposition
Very closely related to the Eigen Decomposition used in PCA
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Empirical Orthogonal Functions

Have presented simplest (classic) form of EOF’s

Statistical view: PCA on covariance matrix
PCA on covariance or PCA on correlation matrix?
Total variability can be driven by one (or a very few) variables with
large variance
Eg. Var X1 = 100, Var X2 = 2, Var X3 = 2, Var X4 = 2
“most important” axis will be X1 because it has a large variance

EOF/PCA analysis of covariance matrix only makes sense when each
variable has same units

Statistical PCA more frequently done on correlation matrix
covariance matrix: center each variable
correlation matrix: center and standardize each variable (so each Z∗

has sd = Var =1
An axis then represents a bundle of correlated variables, i.e., variables
that change together (+ or -1)
axes get large eigenvalues by representing many variables that change
together.

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 21 / 48

EOF extensions: rotated axes

rotate axes to make them “more physically relevant”

choice of rotation still determined by data, not outside knowledge

Many algorithms, each chooses rotation differently

Orthogonal rotations: axes still orthogonal
Most common is varimax algorithm: make α’s close to 0 or ± 1
so axes tend to either ignore a variable or include it completely
Oblique rotations: allow axes to be non-orthogonal
Much more difficult to define criteria for “good” set of axes

Statistics: known as factor analysis
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EOF extensions: Extended EOF

Analysis based on covariance between two locations

treats each time as an independent observation

What if times are not independent?

Extended EOF: incorporate temporal correlation

See references for additional information
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PM10 in Germany

sd’s for each EOF are: 23.3, 12.7, 8.7, 7.7, 6.2, 5.6, 3.2, 2.8, and 1.9

First EOF accounts for 58.3% = 23.32/(23.32 + 12.72 · · ·+ 1.92) of
total variability
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PM10 in Germany
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Space-time data

What about pattern as strength/scale of heterogeneity?

Semivariogram for spatial pattern
autocorrelation function for temporal pattern

autocorrelation function is Cor Yt , Yt+δ for different δ
δ is the time lag (equivalent to distance in space)
How strongly correlated are obs. one time apart (δ = 1)?
How quickly does correlation die out with time lag?

Can describe autocorrelation / autocovariance as semivariance in time

γtime(δ) = E [Z (s, t)− Z (s, t + δ)]2 = σ2(1− ρ(δ))

under assumption of 2nd order stationarity
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Space-time data

Lots of things you could do

My approach is choose methods that answer your questions

Is the spatial pattern similar at each time?
Estimate and fit variograms for each time
How similar are they?
Could construct an approximate test based on weighted SS from fits

Predict over space at each time separately.
Could divide data by time, estimate time-specific variogram
Nothing new, but ignores any temporal dependence

If believe similar spatial patterns each time:
Better estimate of variogram by combining information across times:
all times have same variogram: compute average of time-specific vg’s
variogram changes smoothly, γt similar to γt−1

γ̂∗t (h) = λγ̂t(h) + (1− λ)γ̂∗t−1(h)

Combine spatial and temporal dependence: space-time kriging

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 27 / 48

PM 10 in Germany

● ● ● ●

●

●

●

●

●

● ●

●

●

●

●

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

dist

ga
m

m
a

● ● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

● ●
●

●

●

● ●

●
●

●

●

●

●
●

● ●
●

●

●

●

● ●
●

●

●

●

●

●

●
● ● ● ● ●

●
●

● ● ●
● ●

●

●

● ●

●

●
●

● ●
●

● ●
●

● ●
●● ● ●

●

●

●

●
● ●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●
● ● ● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 28 / 48



log PM 10 in Germany

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

dist

ga
m

m
a

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
● ●

●

●
●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 29 / 48

PM 10 in Germany
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PM 10 in Germany
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Space-time kriging

Consider data as one long vector for all locations and times

If fit a single spatial variogram, you pool information from all times.
If fit a single temporal variogram, you pool information from all
locations.

But want a variogram for space and time simultaneously

Once you have variograms: predicting is easy.

Use the big VC matrix to krige.

Two relatively simple models for the space-time variogram

Metric ST model
Separable ST model
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Space-time kriging: Metric model

Define time as a third coordinate

Define an anisotropy coefficient , θ, (geometric anisotropy ideas) to
relate one unit of time to equivalent distance

hij =
√

(s i − s j)2 + θ(ti − tj)2

Fit one joint variogram

No issues with nugget or sill

nugget is γ(h) for h close to 0 (similar time, similar location)
sill is γ(h) for large separation in time, or distant locations, or both
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Space-time data: Separable model

Write space-time covariance as a product of a spatial covariance
function and a temporal covariance function

Cov Z (s i , ti ), Z (s j , tj) = σ2Corspace(s i , s j)× Cortime(ti , tj)

Single sill
Sometimes sum used instead of product

Commonly used because it’s simple

Simplifies a lot of matrix computations
Dominant model, especially prior to 2000

But it’s probably too simple to be realistic

Assumes no space-time interaction
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Choosing a model

Could view as a model selection problem

Like choosing a spatial variogram model

Principles are simple:

Use model selection criteria for all (s,y): lnL, AIC, wt SSE
Or “what looks like a good fit”
No easy software implementation

My suggestion:

Kriging works best when have a good model for short distance/time lag
So which model does the best job fitting empirical time-specific
variograms for short distances?
To me: the Separable model (see next slide)
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log PM 10 in Germany: metric model
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log PM 10 in Germany: separable model
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Hierarchical modeling

Kriging is a “dumb” predictor

Only uses observed values and their patterns

Space-time data often arise because of ecological/environmental
processes

“blob” of pollutant gets carried downstream or downwind
invasive species has dispersal and population dynamics
Use knowledge of the process(es) to predict Z (s, t) given information
about dynamics and Z (s, t − 1)

Hierarchical models provide a way to think about modeling such data

Two separate levels in a hierarchical model

Process model:

dynamical model describing how the system works
probably includes variables not directly measured

Observation model:

how what you observe relates to the quantities in the process model

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 7 Spring 2018 45 / 48

Hierarchical modeling

Classic example:

predicting location of a deep-space satellite
Process model has 9 state variables:
(X,Y,Z) position, (X,Y,Z) velocity, (X,Y,Z) acceleration
Observation model has intermittent fixes on position (X,Y,Z)

Data measured with error

Use data to estimate parameters in process and observation models

Use model to predict position each day
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Hierarchical models

When all random distributions are normal, estimate parameters by
maximum likelihood

Procedure to predict state variables known as the Kalman filter

More generally, likelihood has integrals that can not be analytically
solved

Bayesian inference

Adds third level to model: specification of prior distributions

Spatial application:

Environmental contaminant data with < detection limit observations
Process model: Z(s) follows a spatial correlation model
Observational model:
data are Z(s) when above detection limit and “< dl” when not
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Hierarchical models

Details very problem-specific

If you’re interested in more:

Stat 534: Ecological statistics, ends with section on hierarchical
modeling for ecological data
Stat 574: Bayesian statistics (previously Stat 444)
Banerjee, Carlin and Gelfand or Wikle and Cressie books
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